0.016 (7) \AA at $\mathrm{C}(23)$ of (I)]. The $\mathrm{Cu}-\mathrm{O}-\mathrm{C}-\mathrm{C}-$ N (amino acid) five-membered chelate rings have an envelope conformation with $\mathrm{N}(4) 0.326$ (7) \AA out of plane in (I) and C(3) 0.256 (9) \AA out of plane in (II). These variations in conformation are assigned to packing forces. In compound (I) $\mathrm{O}(2)$ and $\mathrm{N}(4)$ are hydrogen bonded to the hydrate water molecule [lengths: $\mathrm{O} W \cdots \mathrm{O}\left(2^{\mathrm{i}}\right) \quad 2.805(8)$ and $\mathrm{O} W \cdots \mathrm{~N}\left(4^{\text {ii }}\right)$ $3 \cdot 15$ (2) \AA; symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (ii) $\frac{3}{2} x$, $1-y, \frac{1}{2}+z$], while in (II) only $\mathrm{O}(W 1)$ (apical position) is strongly hydrogen bonded to $\mathrm{O}(W 2)\left[\mathrm{O}(W 2) \cdots \mathrm{O}\left(W 1^{1}\right)\right.$ $2 \cdot 69$ (1) \AA; (i) x, y, z].

This work was supported in part by the National Institutes of Health (USA) under Grant GM-19666 (REM). Two of us (LR and AM) thank the Facultad de Química UNAM-CONACYT (México) and the CSIC (Spain) for financial support.

References

Boys, D., Escobar, C. \& Martínez-Carrera, S. (1981). Acta Cryst. B37, 351-355.

Desiraju, G. R., Luss, H. R. \& Smith, D. L. (1978). J. Am. Chem. Soc. 100, 6375-6380.
Griesser, T. \& Sigel, H. (1970). Inorg. Chem. 9, 1238-1253.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-100, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Main, P., Fiske, S. L., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1980). multan. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mégnamisi-Bélombé, M. \& Endres, H. (1983). Acta Cryst. C39, 707-709.
Nicholson, G. A., Petersen, J. L. \& McCormick, B. J. (1982). Inorg. Chem. 21, 3274-3278.
Phelps, D. W., Goodman, W. H. \& Hodgson, D. J. (1976). Inorg. Chem. 15, 2266-2271.
Rojo, T., Vlasse, M. \& Beltran-Porter, D. (1983). Acta Cryst. C39, 194-198.
Ruiz-Ramírez, L., Martínez, A. \& Gasque, L. (1988). In preparation.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Solans, X., Ruiz-Ramírez, L., Gasque, L. \& Briansó, J. L. (1987). Acta Cryst. C43, 428-430.

Svedung, D. H. (1969). Acta Chem. Scand. 23, 2865-2871.
Van Meerssche, M., Germain, G., Declerce, J.-P. \& WilputteSteinert, L. (1981). Cryst. Struct. Commun. 10, 47-51.

Structure of $\left\{N\right.$-[2-(2-Aminoethylamino)ethyl]salicylideneaminato- $\left.O, N, N^{\prime}, N^{\prime \prime}\right\}$ nickel(II) Perchlorate

By J. Podlahová, K. Knížek and J. Loub*
Department of Inorganic Chemistry, Charles University, Hlavova 8/2030, 12840 Praha 2, Czechoslovakia

and J. Hašek
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Heyrovského nám. 2, 16206 Praha 6, Czechoslovakia

(Received 25 September 1987; accepted 4 January 1988)

Abstract

Ni}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\right)\right] \mathrm{ClO}_{4}, M_{r}=364.43\), monoclinic, $\quad P 2_{1} / c, \quad a=8.930$ (4), $\quad b=13.391$ (5),$\quad c=$ 11.902 (6) $\AA, \beta=98.34$ (4) ${ }^{\circ}, V=1408$ (1) $\AA^{3}, Z=4$, $D_{m}=1.74$ (2),$\quad D_{x}=1.718$ (1) $\mathrm{Mg} \mathrm{m}^{-3}, ~ \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \mu=1.59 \mathrm{~mm}^{-1}, F(000)=752, T=295 \mathrm{~K}$, $R=0.078$ for 2498 unique observed reflections. The structure consists of $\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\right)\right]^{+}$complex cations and perchlorate anions. The coordination polyhedron around Ni is a distorted square with the tetradentate $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{-}$ligand (saden) bonded to the metal through one O and three N atoms. The perchlorate anion is disordered.

[^0]0108-2701/88/040631-03\$03.00

Introduction. The study of the title compound was undertaken as part of an investigation of complexes with unsymmetrical tetradentate Schiff bases (Haber, 1986).

Experimental. The crystals were prepared by crystallization from a mixture of nickel(II) perchlorate, salicylaldehyde and diethylenetriamine from aqueous ethanol (Haber, 1986). Orange crystals were obtained, stable in air and to X-rays. Density determined pycnometrically. A sphere-shaped crystal of $r=$ 0.15 mm was used for the measurements. Syntex $P 2_{1}$ diffractometer, graphite monochromator, 20 reflections with 2θ from 8.86 to 20.66° for measuring lattice © 1988 International Union of Crystallography

Table 1. Atomic coordinates $\left[\times 10^{4}\right.$, for $\mathrm{O}(3)-$ $\left.\mathrm{O}(5) \times 10^{3}\right]$ and equivalent isotropic thermal parameters $U_{\text {eq }}\left[\right.$ for $\left.\mathrm{O}(3)-\mathrm{O}(5) U_{\text {iso }} \times 10^{3}\right]$ with e.s.d.'s in parentheses

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}+2 U_{13} \cos \beta\right) / 3$.				
	\boldsymbol{x}	y	z	$U_{\text {eq }} / U_{\text {liso }}\left(\AA^{2}\right)$
Ni	941 (1)	4436 (1)	6730 (1)	35.4 (3)
Cl	2861 (2)	1528 (2)	6552 (2)	58.7 (7)
O(1)	-945 (5)	3886 (3)	6330 (4)	39 (1)
$\mathrm{N}(1)$	462 (8)	4758 (5)	8224 (6)	48 (2)
$\mathrm{N}(2)$	2863 (7)	5038 (5)	7218 (6)	49 (2)
N(3)	1701 (6)	4073 (4)	5433 (5)	38 (2)
C(1)	1663 (10)	5401 (7)	8828 (7)	62 (3)
C(2)	3105 (10)	5069 (8)	8462 (7)	64 (3)
C(3)	4008 (8)	4504 (6)	6634 (7)	57 (3)
C(4)	3309 (8)	4373 (6)	5428 (7)	51 (2)
C(5)	1031 (7)	3557 (5)	4598 (5)	39 (2)
C(6)	-497 (7)	3202 (5)	4538 (5)	35 (2)
C(7)	-1391 (7)	3367 (5)	5419 (5)	35 (2)
C(8)	-2866 (8)	2939 (5)	5277 (6)	43 (2)
C(9)	-3400 (9)	2387 (6)	4336 (6)	51 (3)
C(10)	-2514 (9)	2205 (6)	3493 (6)	51 (3)
C(11)	-1108 (9)	2606 (5)	3589 (6)	45 (2)
O(2)	2924 (10)	503 (6)	6817 (8)	119 (3)
O(31)	350 (1)	183 (1)	564 (1)	75 (3)
$\mathrm{O}(41)$	379 (2)	196 (1)	756 (1)	187 (10)
$\mathrm{O}(51)$	140 (1)	182 (1)	660 (1)	89 (4)
O(32)	225 (2)	223 (1)	722 (1)	96 (4)
$\mathrm{O}(42)$	439 (1)	187 (1)	655 (2)	128 (6)
$\mathrm{O}(52)$	217.(2)	160 (1)	538 (1)	160 (8)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{O}(1)$	$1.837(4)$	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(1)$	$90.7(2)$
$\mathrm{Ni}-\mathrm{N}(1)$	$1.936(7)$	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)$	$96.4(2)$
$\mathrm{Ni}-\mathrm{N}(2)$	$1.909(6)$	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2)$	$86.3(3)$
$\mathrm{Ni}-\mathrm{N}(3)$	$1.839(6)$	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	$86.7(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.48(1)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$106.4(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.49(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$107.3(7)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.47(1)$	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	$118.1(7)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.50(1)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$106.5(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.49(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$	$107.3(6)$
$\mathrm{C}(4)-\mathrm{N}(3)$	$1.492(8)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(5)$	$118.8(6)$
$\mathrm{N}(3)-\mathrm{C}(5)$	$1.285(9)$	$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.2(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.437(9)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.8(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.424(9)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$124.1(6)$
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.300(7)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$117.2(6)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.424(9)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$121.4(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.368(10)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$121.2(7)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.386(10)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.3(6)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.354(10)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$122.2(6)$
$\mathrm{C}(11)-\mathrm{C}(6)$	$1.425(9)$	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.6(6)$
$\mathrm{Cl}-\mathrm{O}(2)$	$1.407(8)$	$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(31)$	$117.5(7)$
$\mathrm{Cl}-\mathrm{O}(31)$	$1.36(1)$	$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(41)$	$101.6(8)$
$\mathrm{Cl}-\mathrm{O}(41)$	$1.48(1)$	$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(51)$	$106.3(7)$
$\mathrm{Cl}-\mathrm{O}(51)$	$1.37(1)$	$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(32)$	$122.2(7)$
$\mathrm{Cl}-\mathrm{O}(32)$	$1.39(1)$	$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(42)$	$107.5(7)$
$\mathrm{Cl}-\mathrm{O}(42)$	$1.44(1)$	$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(52)$	$106.1(8)$
$\mathrm{Cl}-\mathrm{O}(52)$	$1.44(1)$		

parameters; $\omega-2 \theta$ scan; absorption ignored; max. $(\sin \theta) / \lambda=0.681 \AA^{-1} ; h-12-12, k 0-18, l 0-16$; three standard reflections measured after 33 reflections with no significant variation; 4157 measured reflections, 3765. unique reflections, 1267 unobserved reflections with $I<1 \cdot 96 \sigma(I)$; heavy-atom method; F magnitudes in full-matrix least-squares refinement; $\mathrm{H}(\mathrm{N})$ atoms localized from a $\Delta \rho$ map, $\mathrm{H}(\mathrm{C})$ atoms localized in theoretical positions; all positional parameters were
refined with the exception of those of $\mathrm{H}(\mathrm{C})$ atoms; anisotropic thermal parameters of $\mathrm{Ni}, \mathrm{Cl}, \mathrm{O}(1), \mathrm{N}, \mathrm{C}$ and isotropic thermal parameters of $\mathrm{O}(\mathrm{Cl})$ and H atoms were refined; $R=0.078, w R=0.082, w=2.29$ / $\left[\sigma^{2}(F)+0.0009 F^{2}\right]$; the ratio of max. least-squares shift to e.s.d. in the last refinement cycle -0.935 for $\mathrm{O}(51)$; max. and min. heights in a final $\Delta \rho$ map $1.74[0.85 \AA$ from $O(51)$] and $-0.82 \mathrm{e}^{-3}$; atomic scattering factors and corrections for anomalous dispersion from International Tables for X-ray Crystallography (1974); ICL 4-72 computer; program SHELX76 (Sheldrick, 1976).*

Discussion. The final atomic parameters are given in Table 1. The selected intramolecular bond distances and angles are given in Table 2. The complex cation with omitted H atoms is depicted in Fig. 1.
In the cation, the coordination polyhedron around Ni approximates to the square formed by three N and one O of the saden ligand. The deviations of the $\mathrm{NiN}_{3} \mathrm{O}$ core from the best plane are in the range of -0.048 (7) to 0.064 (5) \AA. The deviations of the atoms in the five-membered chelate rings $\mathrm{Ni}-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-$ $\mathrm{N}(2)$ and $\mathrm{Ni}-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$ from the best planes are in the range of -0.245 (9) [C(1)] to 0.29 (1) $[\mathrm{C}(2)]$ and $-0.224(7)[\mathrm{N}(2)]$ to $0.280(8) \AA[\mathrm{C}(3)]$ respectively. The conformations of the first and second chelate rings correspond to skew and envelope respectively. The deviations of the atoms in the six-membered chelate ring $\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}$ (1) from

[^1]

Fig. 1. A view of the $\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\right)\right]^{+}$complex cation along b.
the best plane are in the range of $-0.022(4)[\mathrm{O}(1)]$ to 0.016 (1) $\AA(\mathrm{Ni})$. The phenyl ring is planar with the value of $\chi^{2}(0.05,3)=6 \cdot 6$. The torsion angles $\mathrm{N}(1)-$ $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ and $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$ are 50 and -42° respectively. From the above planes, the largest dihedral angle of 12.9° is between the phenyl and the $\mathrm{Ni}-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$ planes.

The perchlorate anion is disordered. The maxima of the electron density related to the O atoms of the perchlorate anion were interpreted as two perchlorate anions with one shared $\mathrm{Cl}-\mathrm{O}(2)$ bond and with occupancy factors of 0.5 for the O atoms $\mathrm{O}(31), \mathrm{O}(32)$, $\mathrm{O}(41), \mathrm{O}(42)$, and $\mathrm{O}(51), \mathrm{O}(52)$ respectively. From a number of perchlorate locations tried, this model led to the best R-factor value. The large thermal parameters of $\mathrm{O}(\mathrm{Cl})$ atoms and the allocation of the maxima and minima in the $\Delta \rho$ map to these atoms shows that the perchlorate anion may rotate along the $\mathrm{Cl}-\mathrm{O}(2)$ bond. This is in accordance with the fact that the v_{3} and v_{4}
bands (1085 and $620 \mathrm{~cm}^{-1}$ respectively) in the infrared spectrum are not split.

An inspection of the crystal packing shows that the bonding of the complex cations and the perchlorate anions is predominantly ionic. The shortest intermolecular contacts are $\mathrm{Ni} \cdots \mathrm{O}(32)=3 \cdot 20(1), \mathrm{N}(1) \cdots$ $\mathrm{O}\left(2^{\mathrm{i}}\right)=3.18(1)$ and $\mathrm{N}(1) \cdots \mathrm{O}\left(51^{1}\right)=3 \cdot 25(2) \AA(\mathrm{i}=$ $-x, 0.5+y, 1.5-z$).

Dr V. Haber is thanked for providing the crystals.

References

Haber, V. (1986). Abstracts. XXIV ICCC, edited by Y. Konstantatos et al., p. 361. Athens: Chimika Chronika.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Dibutyldichlorotin(IV)

By Jeffery F. Sawyer
Lash Miller Chemical Laboratories, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 1 A1

(Received 28 October 1987; accepted 21 December 1987)

Abstract

SnCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right], M_{r}=303 \cdot 8\), monoclinic, $C 2 / c, \quad a=14.071(6), \quad b=9.418$ (8), $\quad c=$ 19.836 (11) $\AA, \quad \beta=103.78$ (4) ${ }^{\circ}, \quad V=2553(5) \AA^{3}, Z$ $=8, D_{x}=1.58 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=$ $23.9 \mathrm{~cm}^{-1}, F(000)=1200, T=298 \mathrm{~K}, R=0.070$ for 1163 reflections with $I \geq 3 \sigma(I)$. In the lattice, molecules of $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ form polymeric chains via asymmetric $\mathrm{Sn}-\mathrm{Cl} \cdots \mathrm{Sn}$ bridges which are bent at Cl $\left[\mathrm{Sn}-\mathrm{Cl} \cdots \mathrm{Sn}=104.3(1), 104 \cdot 8(1)^{\circ}\right]$ and nearly linear at $\mathrm{Sn}\left[\mathrm{Cl} \cdots \mathrm{Sn}-\mathrm{Cl}=172.3(1), 173.1(1)^{\circ}\right]$. Overall the geometry at Sn is distorted octahedral with $\mathrm{C}-\mathrm{Sn}-\mathrm{C}, \mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ and $\langle\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}\rangle$ angles of $132 \cdot 1$ (7), $97 \cdot 2$ (2) and $105 \cdot 6(4)^{\circ}$, respectively. The primary $\mathrm{Sn}-\mathrm{Cl}$ and secondary $\mathrm{Sn} \cdots \mathrm{Cl}$ distances are $2.372(5)$ and $2.388(5) \AA$ and 3.544 (5) and 3.514 (5) \AA, respectively. The observed CSnC angle is significantly larger than that predicted by NMR data for $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ in solution but is comparable to that observed in $\mathrm{Et}_{2} \mathrm{SnCl}_{2}$ and related molecules.

Introduction. The discussion concerning the degree of association, the nature of the intra- or intermolecular interactions or secondary bonding and the influence of
these interactions on the primary geometry of the $\mathrm{Sn}^{\mathrm{IV}}$ atoms in the crystal structures of several diorgano- or triorganotin(IV) halides, $R_{2} \mathrm{Sn} X_{2}$ or $R_{3} \mathrm{Sn} X$ continues unabated (see, for example, Alcock \& Sawyer, 1977; Amini, Holt \& Zuckerman, 1987; Baxter, Holt \& Zuckerman, 1985; Ganis, Valle, Furlani \& Tagliavini, 1986; Lefferts, Molloy, Hossain, van der Helm \& Zuckerman, 1982; Molloy, Quill \& Nowell, 1985). Moreover, some correlations between intramolecular and intermolecular parameters by the use of the structure correlation method on data for $\mathrm{Sn}^{1 \mathrm{~V}}$ compounds in the Cambridge Structural Database have been reported (Britton \& Dunitz, 1981) and recently some evidence for molecular association in $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ has been presented using IR-band frequency shifts as a function of temperature (Herber, 1985). Similarly a very recent comparison of the solid-state and solution NMR structures of $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ (Lockhart \& Farlee, 1987) has indicated that there is a small but significant change in the structure arising from solid-state effects (most notably in a change in the $\mathrm{Me}-\mathrm{Sn}-\mathrm{Me}$ angle of ca 6°). The present structure was determined in order to provide further data for these discussions, par(c) 1988 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: *Lists of atomic coordinates and isotropic thermal parameters for H atoms, bond distances and angles for the $\mathrm{H}(\mathrm{N})$ atoms, anisotropic thermal parameters for the non-H atoms and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44664 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

